Existence of Chaos for a Singularly Perturbed NLS Equation

نویسنده

  • Yanguang Li
چکیده

The work [1] is generalized to the singularly perturbed nonlinear Schrödinger (NLS) equation of which the regularly perturbed NLS studied in [1] is a mollification. Specifically, the existence of Smale horseshoes and Bernoulli shift dynamics is established in a neighborhood of a symmetric pair of Silnikov homoclinic orbits under certain generic conditions, and the existence of the symmetric pair of Silnikov homoclinic orbits has been proved in [2]. The main difficulty in the current horseshoe construction is introduced by the singular perturbation ǫ∂2 x which turns the unperturbed reversible system into an irreversible system. It turns out that the equivariant smooth linearization can still be achieved, and the Conley-Moser conditions can still be realized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

Smale Horseshoes and Symbolic Dynamics in Perturbed Nonlinear Schrödinger Equations

In [12], we gave an intensive study on the level sets of the integrable cubic nonlinear Schrödinger (NLS) equation. Based upon that study, the existence of a symmetric pair of homoclinic orbits in certain perturbed NLS systems was established in [11]. [Stated in Theorem 1.3 below.] In this paper, the existence of Smale horseshoes and symbolic dynamics is established in the neighborhood of the s...

متن کامل

A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers

In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002